Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.577
Filtrar
1.
Int J Biol Macromol ; 265(Pt 1): 130466, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432274

RESUMO

A novel colorimetric aerogel was developed by the complexation of carboxymethyl cellulose (CMC), sodium alginate (SA), and black goji anthocyanin (BGA) followed by freeze-drying for monitoring fish (Coho salmon) freshness during storage at 4 °C and 25 °C. The various aerogels (C/S/B3:1, C/S/B2:1, C/S/B1:1, C/S/B1:2, and C/S/B1:3) externally and internally were characterized using SEM, FTIR, XRD, DSC, and TGA. Among them, the aerogel composite C/S/B1:2 exhibited the most uniform pore size, largest specific surface area, rapid color changes in various alkaline vapors (5 µM and 50 µM), and better mechanical strength. Furthermore, the colorimetric aerogel became dark blue from light purple during fish storage at temperatures of 4 °C and 25 °C when it reached pH 7.49 and 7.33, TVC 8.9 × 107 CFU/g and 8.5 × 107 CFU/g, and TVB-N 33.8 mg/100 g and 26.12 mg/100 g, respectively, indicating fish completely deteriorated. Taken together, the colorimetric aerogel composite C/S/B1:2 was promising for determining fish freshness, which could be utilized as a non-destructive and useful intelligent sensor in monitoring various fish and meat freshness and/or quality.


Assuntos
Alginatos , Carboximetilcelulose Sódica , Animais , Carboximetilcelulose Sódica/química , Antocianinas/química , Colorimetria , Embalagem de Alimentos
2.
Carbohydr Polym ; 334: 122020, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553219

RESUMO

Zinc oxide nanostructures (ZnO NS) were fabricated in situ within a ternary hydrogel system composed of carboxymethyl cellulose-agarose-polyvinylpyrrolidone (CAP@ZnO TNCHs) by a one-pot method employing moist-heat solution casting. The percentages of CMC and ZnO NS were varied in the CAP hydrogel films and then they were investigated by different techniques, such as ATR/FTIR, TGA, XRD, XPS, and FE-SEM analysis. Furthermore, the mechanical properties, hydrophilicity, swelling, porosity, and antibacterial activity of the CAP@ZnO TNCHs were studied. In-vitro biocompatibility assays were performed with skin fibroblast (CCD-986sk) cells. In-vitro culture of CCD-986sk fibroblasts showed that the ZnO NS facilitated cell adhesion and proliferation. Furthermore, the application of CAP@ZnO TNCHs enhanced cellular interactions and physico-chemical, antibacterial bacterial, and biological performance relative to unmodified CAP hydrogels. Also, an in vivo wound healing study verified that the CAP@ZnO TNCHs promoted wound healing significantly within 18 days, an effect superior to that of unmodified CAP hydrogels. Hence, these newly developed cellulose-based ZnO TNCHs are promising materials for wound healing applications.


Assuntos
Nanoestruturas , Óxido de Zinco , Hidrogéis/farmacologia , Hidrogéis/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Carboximetilcelulose Sódica/química , Antibacterianos/química , Nanoestruturas/química , Cicatrização
3.
Carbohydr Polym ; 332: 121915, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431395

RESUMO

This study aimed to explore an innovative approach to enhancing the shelf-life and quality of meat products through the application of an active packaging system. The study involved the development of new free-standing carboxymethyl cellulose (CMC) nanocomposite films incorporated with nanoencapsulated flavonoids derived from pomegranate extract. The loaded flavonoids, known for their antioxidant and antimicrobial properties, were nanoencapsulated via a self-assembly approach in a mixture of chitosan and sodium alginate to improve their stability, solubility, and controlled release characteristics. Chemical structure, size, and morphology of the obtained nanoparticles (Pg-NPs) were studied with FTIR, zeta-sizer, and TEM. The Pg-NPs showed particle size of 232 nm, and zeta-potential of -20.7 mV. Various free-standing nanocomposite films were then developed via incorporation of Pg-NPs into CMC-casted films. FTIR, SEM, thermal and mechanical properties, and surface wettability were intensively studied for the nanocomposite films. Barrier properties against water vapor were investigated at 2022 g·m-2d-1. The nanocomposite films possessed superior properties for inhibiting bacterial growth and extending the shelf-life of beef and poultry meat for 12 days compared with the Pg-NPs-free CMC films. This study presented a promising approach for development of active packaging systems with improved antimicrobial and antioxidant properties, and economic and environmental impacts.


Assuntos
Anti-Infecciosos , Punica granatum , Animais , Bovinos , Carboximetilcelulose Sódica/química , Embalagem de Alimentos , Antioxidantes/farmacologia , Antioxidantes/química , Carne/microbiologia , Anti-Infecciosos/farmacologia , Flavonoides
4.
Int J Biol Macromol ; 264(Pt 2): 130572, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447825

RESUMO

To effectively extend the shelf life of fruits meanwhile facilitating consumers to judge their freshness, in this work, a double-layer multifunctional film combining CO2 sensitivity and antibacterial properties was successfully prepared by adding methyl red (MR), bromothymol blue (BTB) into gellan gum (GG) as the sensing inner layer, and doping tannic acid (TA) into sodium alginate with sodium carboxymethyl cellulose (CMC) as the antimicrobial outer layer, which was applied to the freshness indication of strawberries. Microscopic morphology and spectral analysis demonstrated that the bi-layer films were fabricated successfully. The mechanical characteristics, thermal stability, water vapor resistance, and antibacterial capabilities of the bilayer films improved as TA concentration rose. They exhibited noticeable color changes at pH = 2-10 and different concentrations of CO2. Application of the prepared films to strawberries revealed that the GG-MB@SC-6%TA film performed most favorably under 4 °C storage conditions, not only monitoring strawberry freshness but also retaining high soluble solids and titratable acidity, resulting in a slight decrease in hardness and weight loss. Therefore, taking into account all of the physical-functional characteristics, the GG-MB@6%TA film has a broad application prospect for intelligent food packaging.


Assuntos
Anti-Infecciosos , Fragaria , Polifenóis , Polissacarídeos Bacterianos , Dióxido de Carbono , Carboximetilcelulose Sódica/química , Alginatos , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos/métodos , Sódio
5.
Int J Biol Macromol ; 263(Pt 1): 130302, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382794

RESUMO

In this study, dialdehyde carboxymethyl cellulose (DCMC, 10 wt% based on gelatin) and varying contents of coffee leaf extract (CLE, 1, 3, 5 and 7 wt% based on gelatin) were incorporated into gelatin (GEL) matrix to develop multifunctional food packaging films. DCMC acted as a physical reinforcing filler through crosslinking with GEL matrix by Schiff-base reaction, CLE served as an active filler to confer film functional properties. The micro-morphology, micro-structure, physicochemical and functional properties of the GEL/DCMC/CLE composite film were investigated. The results demonstrated that mechanical, barrier properties and thermal stability of films were significantly improved by incorporation of CLE. Compared with pure GEL film, the GEL/DCMC/5%CLE film exhibited excellent UV light blocking while kept enough transparency, the best mechanical property, water resistance, water vapor and oxygen barrier, as well as thermal stability. GEL/DCMC/5%CLE film also possessed strong antioxidant activity and some antibacterial activity against E. coli and S. aureus. Packaging application testing demonstrated that the resultant GEL/DCMC/5%CLE film effectively delayed the lipid oxidation of walnut oil and preserved the postharvest freshness of fresh walnut kernels under ambient conditions.


Assuntos
Carboximetilcelulose Sódica , Embalagem de Alimentos , Carboximetilcelulose Sódica/química , Gelatina/química , Escherichia coli , Staphylococcus aureus , Extratos Vegetais/farmacologia
6.
Int J Biol Macromol ; 263(Pt 1): 130294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382790

RESUMO

Herein, three pretreated grapevine lignins were incorporated into carboxymethyl cellulose films. The effects of traditional NaOH pretreated lignin and DES (ChCl-LA, ChCl-LA & K2CO3-EG) pretreated lignin on film properties were compared. Modern analytical techniques were employed to systematically characterize the pretreated lignin and the different CMC-lignin films. The results showed that DES lignin was of high purity, low molecular weight, and homogeneous structure. It outperformed traditional NaOH lignin in terms of compatibility with CMC, enabling it to perform its bioactivity and physicochemical functions in films. This feature effectively enhanced the hydrophobicity, UV shielding ability, water vapor barrier, thermal stability, mechanical properties, and biological activity of CMC-DES lignin film. NMR (2D HSQC) showed that the excellent antioxidant and antibacterial capabilities of CMC-DES lignin film are due to the retention of butyl (S) and p-hydroxyphenyl (H) units in DES lignin, resulting in its rich phenolic hydroxyl content. The detailed structural elucidation of DES lignin's chemical interactions with CMC provided valuable insights into the advantageous properties observed in the films, presenting innovative solutions for applications in the food packaging and preservation industries.


Assuntos
Anti-Infecciosos , Lignina , Lignina/química , Carboximetilcelulose Sódica/química , Antioxidantes/farmacologia , Antioxidantes/química , Hidróxido de Sódio , Permeabilidade , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Embalagem de Alimentos
7.
Int J Biol Macromol ; 263(Pt 2): 130362, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395287

RESUMO

In this study, anthocyanin from Garcinia mangostana shell extract (Mse) was used as pH indicator to prepare intelligent carboxymethyl cellulose (CMC) based composite films. The structure and properties of the CMC-based composite films were characterized and discussed in detail. Results showed that the CMC-based composite films with Mse had excellent mechanical, antibacterial and antioxidant abilities. Especially, the carboxymethyl cellulose/corn starch/Garcinia mangostana shell extract (CMC/Cst/Mse) composite film had best mechanical properties (20.62 MPa, 4.06 % EB), lowest water vapor permeability (1.80 × 10-12 g·cm/(cm2·s·Pa)), excellent ultraviolet (UV) blocking performance, and the best antibacterial and antioxidant abilities. The pH sensitivity of composite films which had Mse obviously changed with time when the fish freshness was monitored at 25 °C. Given the good pH sensitivity of the composite films, it had significant potential for application of intelligent packaging film as a food packaging material to indicate the freshness of fish.


Assuntos
Antioxidantes , Garcinia mangostana , Animais , Antioxidantes/química , Antocianinas/farmacologia , Carboximetilcelulose Sódica/química , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos/métodos , Extratos Vegetais/farmacologia
8.
Int J Biol Macromol ; 261(Pt 2): 129947, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316326

RESUMO

The present research investigates the effectiveness of nano-emulsified coatings (C-1, C-2, and C-3) in preserving the kiwifruit at a temperature of 10 ± 2 °C with 90-95 % relative humidity (RH) for 30 days. The nano-emulsions were prepared from varied carboxymethyl cellulose (CMC) concentrations with different combinations of essential oils such as thyme, clove, and cardamom. Dynamic light scattering investigation with Zeta Sizer revealed that C-1, C-2, and C-3 nano-emulsions have nano sizes of 81.3 ± 2.3, 115.3 ± 4.2, and 63.2 ± 3.2 nm, respectively. The scanning electron microscopy images showed that the nanoemulsion of C-1 had homogenous spherical globules, C-2 had voids, and C-3 showed a non-porous structure with uniform dispersion. The X-ray diffraction analysis indicated that C-1, C-2, and C-3 nano-emulsion exhibited distinct crystallinity and peaks. The nano-emulsion C-1 had reduced crystallinity, while C-2 had lower intensity peaks, and C-3 had increased crystallinity. The results documented that compared to control kiwifruit samples, the samples coated with C-3 nano-emulsion have decreased weight loss, decay incidence, soluble solids, maturity index activity, ethylene production, total bacterial count, and increased titratable acid, and firmness attributes. The results of current research are promising and would be applicable in utilization in industrial applications.


Assuntos
Filmes Comestíveis , Óleos Voláteis , Conservação de Alimentos/métodos , Carboximetilcelulose Sódica/química , Temperatura , Emulsões/química
9.
ACS Appl Bio Mater ; 7(3): 1643-1655, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38366996

RESUMO

Pathogens and pests pose significant threats to global crop productivity and plant immunity, necessitating urgent measures from researchers to prevent pathogen contamination and pest damage to crops. A natural plant-based antibacterial agent, eugenol (EUG), has demonstrated excellent antimicrobial and insect repellent capabilities, but the characteristics of volatilization and poor dissolution limit the practical application. The nanoization of pesticide formulations holds promise in the development of highly effective pesticides for antibacterial and insecticidal purposes. Herein, a eugenol-loaded nano delivery system (EUG@CMC-PGMA-CS) was synthesized using glycidyl methacrylate (GMA) as a functional monomer to connect carrier core structure carboxymethyl cellulose (CMC) with shell structure chitosan (CS), and EUG was encapsulated within the carrier. EUG@CMC-PGMA-CS demonstrated excellent leaf affinity, with minimum contact angles (CAs) of 37.83 and 70.52° on hydrophilic and hydrophobic vegetable leaf surfaces, respectively. Moreover, the maximum liquid holding capacity (LHC) of EUG@CMC-PGMA-CS on both hydrophilic and hydrophobic vegetable leaf surfaces demonstrates a noteworthy 55.24% enhancement compared to the LHC of pure EUG. The in vitro release curve of EUG@CMC-PGMA-CS exhibited an initial burst followed by stable sustained release. It is with satisfaction that the nano delivery system demonstrated exceptional antibacterial properties against S. aureus and satisfactory insecticidal efficacy against Spodoptera litura. The development of this eugenol-loaded nano delivery system holds significant potential for enhanced antibacterial and insect repellents in agriculture, paving the way for the application of volatile bioactive substances.


Assuntos
Eugenol , Repelentes de Insetos , Eugenol/farmacologia , Eugenol/química , Carboximetilcelulose Sódica/química , Sistemas de Liberação de Fármacos por Nanopartículas , Staphylococcus aureus , Antibacterianos/farmacologia
10.
Int J Biol Macromol ; 262(Pt 1): 129980, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340932

RESUMO

The present study investigates the biopolymer packaging film developed from carboxymethyl cellulose (CMC) with varying concentrations of natural rubber latex (NR) and oxidised natural rubber latex (ONR) using the solvent casting method. The physicochemical properties of the CMC/NR and CMC/ONR film samples were characterised using FTIR, TG/DTA, DSC, SEM, and XRD analysis. The increased concentration of NR and ONR helped to enhance mechanical characteristics, superior UV resistance, enhanced resistance to oxygen and water vapour penetration, improved dimensional stability, and a reduction in the moisture retention ability of the film samples. The CMC sample film, incorporated with 1.5 g ONR, was found to have more than a 100 % increase in the tensile strength. The tensile value increased from 21.56 MPa to 48.36 MPa, with the highest young modulus of 0.73 GPa and elastic stability of 7.14 %. The incorporation of NR and ONR significantly reduced the super water absorbency nature of the CMC film, and the moisture content values reduced from 21.6 % to ≅ 0.15 % for ONR-incorporated film. Additionally, the CMC/NR and CMC/ONR films exhibited high optical transparency values and were found to be fast biodegradable, substantiating their potential use in various packaging applications. Application of these materials in perishable fruit packaging has shown significant enhancement in shelf life, highlighting their practical efficiency and potential for sustainable packaging solutions.


Assuntos
Carboximetilcelulose Sódica , Borracha , Borracha/química , Carboximetilcelulose Sódica/química , Látex , Embalagem de Produtos , Embalagem de Medicamentos , Embalagem de Alimentos
11.
Int J Biol Macromol ; 262(Pt 2): 129946, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340936

RESUMO

Organic dye pollution from textiles and other industries presents a substantial risk to people and aquatic life. The use of photocatalysis to decolorize water using the strength of UV light is one of the most important remediation techniques. In the present study, a novel nanocomposites hydrogel including carboxymethyl cellulose (CMC), acrylic acid (AAc), Zinc oxide (ZnO), and silver (Ag) nanoparticles was produced using an eco-friendly γ-irradiation technique for photocatalytic decolorization applications. ZnO and Ag nanoparticles were distributed in the CMC/AAc hydrogel matrix without significant aggregation. SEM, XRD, EDX, TEM, and FTIR analyses were used to assess the physicochemical characteristics of the nanocomposite samples. Carboxymethyl cellulose/acrylic acid/Zinc oxide doped silver (CMC/PAAc/ZnO@Ag) nanocomposite hydrogels were developed and utilized in the photocatalytic decolorization of the lerui acid brilliant blue dye (LABB) when exposed to ultraviolet (UV) radiation. UV- Vis spectrophotometry was utilized to analyze the optical properties of the produced nanostructure. Regarding the decolorization of the LABB, the impacts of operational variables were investigated. The optimum conditions for decolorization (93 %) were an initial concentration of 50 mg/L, pH = 4, catalyst dosage of 50 g/L, and exposure time of 90 min. The results illustrated that the LABB acidic dye from wastewater was remarkably decolored.


Assuntos
Acrilatos , Benzenossulfonatos , Nanopartículas Metálicas , Nanocompostos , Óxido de Zinco , Humanos , Óxido de Zinco/química , Hidrogéis/química , Prata/química , Carboximetilcelulose Sódica/química , Nanopartículas Metálicas/química , Corantes/química , Nanocompostos/química
12.
Int J Biol Macromol ; 262(Pt 2): 130106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346628

RESUMO

An eco-friendly antimicrobial sulfur quantum dot scale inhibitor (CMC-SQDs) synthesized using carboxymethyl cellulose (CMC) showed strong inhibition of calcium sulfate (CaSO4) at a concentration just below 1 mg/L, with an inhibition efficiency exceeding 99 %. However, the precise interaction process between CMC-SQDs and CaSO4 remains unclear. This article investigates the effectiveness of SQDs in inhibiting the formation of CaSO4 and calcium carbonate (CaCO3) scales. Through static scale inhibition tests, molecular dynamics simulations, and quantum chemical calculations, the study aims to elucidate the different impacts of CMC-SQDs on CaSO4 and CaCO3 scale formation. The research focuses on understanding the relationship between the structural activity of CMC-SQDs and their scale-inhibiting performance and delving into the underlying mechanisms of scale inhibition. The findings describe the role of SQDs in a water-based solution, acting as persistent "nanodusts" that interact with calcium (Ca2+) ions and sulfate ions. CMC forms complexes with Ca2+ ions, and the presence of SQDs enhances the van der Waals force, indirectly increasing the resistance of associated ions and the binding energy on the surface of precipitated gypsum. Conversely, SQDs exhibit weak surface stability and have minimal binding energy when interacting with calcite, leading to limited occupation of available adsorption sites.


Assuntos
Carbonato de Cálcio , Pontos Quânticos , Carbonato de Cálcio/química , Sulfato de Cálcio/química , Carboximetilcelulose Sódica/química , Íons , Enxofre/química
13.
Int J Biol Macromol ; 262(Pt 2): 129986, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360231

RESUMO

Until now, many efficient catalysts have been reported that are used for the reduction of nitroarenes. However, a catalyst reusability is a challenge that is often faced in practical environment. In this report, we designed a hydrogel composite (CMC-LDH), which act as support and making it possible to address this challenge. In this research work, zinc/aluminum based layered double hydroxides (Zn/Al LDH) have been assembled with carboxymethyl cellulose (CMC) to prepare CMC/LDH hydrogel beads. The CMC/LDH hydrogel beads were prepared by the ionotropic gelation method. For CMC/LDH/Au preparation, the already prepared CMC/LDH beads were kept in gold ion (Au3+) solution, and their subsequent reduction with sodium borohydride (NaBH4). For the characterization of the prepared samples different instrumental techniques, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy, and scanning electron microscopy (SEM) were adopted. For the catalytic evaluation of CMC/LDH/Au, it was utilized as a catalyst in 4-NP and 4-NA reduction reactions. The continuity of the reaction was monitored by a UV-visible spectrophotometer. Rate constant (kapp) of 0.48474 min-1 and 0.7486 min-1 were obtained for 4-NP and 4-NA reduction, respectively. The hydrogel beads were recycled and reused for up to five successive cycles without significantly changing their catalytic efficiency.


Assuntos
Carboximetilcelulose Sódica , Nanopartículas Metálicas , Compostos de Zinco , Carboximetilcelulose Sódica/química , Ouro , Nanopartículas Metálicas/química , Hidrogéis/química , Zinco , Compostos Orgânicos , Hidróxidos/química
14.
Int J Biol Macromol ; 263(Pt 1): 130190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360247

RESUMO

Injectable materials have attracted great attention in the manufacture of in situ forming hydrogels for biomedical applications. In this study, a facile method to prepare methacrylic anhydride (MA)-modified sodium carboxymethyl cellulose (CMC) as an injectable material for the fabrication of hydrogels with controllable properties is reported. The chemical structure of the series of MA-grafted CMC (CMCMAs) with different MA contents was confirmed by Fourier transform infrared and nuclear magnetic resonance spectroscopy, and the properties of CMCMAs were characterized. Then, the CMCMAs gel (CMCMAs-G) was fabricated by crosslinking of MA under blue light irradiation. The gelation performances, swelling behaviors, transmittance, surface porous structures and mechanical properties of CMCMAs-G can be controlled by varying the content of MA grafted on the CMC. The compressive strength of CMCMAs-G was measured by mechanical compressibility tests and up to 180 kPa. Furthermore, the in vitro cytocompatibility evaluation results suggest that the obtained CMCMAs-G exhibit good compatibility for cell proliferation. Hence, our strategy provides a facile approach for the preparation of light-sensitive and an injectable CMC-derived polymer to fabricate hydrogels for biomedical applications.


Assuntos
Carboximetilcelulose Sódica , Hidrogéis , Hidrogéis/química , Carboximetilcelulose Sódica/química , Metacrilatos , Espectroscopia de Ressonância Magnética , Sódio
15.
Food Res Int ; 179: 114017, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342539

RESUMO

This study produced pH-sensing carboxymethyl cellulose (CMC) films functionalized with bioactive compounds obtained by pressurized liquid extraction (PLE) of grape peel to monitor the freshness of pork and milk. A semi-continuous PLE was conducted using hydroethanolic solution (70:30, v/v) at a flow rate of 5 mL/min, 15 MPa, and 60 °C. The films were produced by the casting technique using CMC (2.5 %, w/v), glycerol (1 %, v/v), and functionalized with 10, 30, and 50 % (v/v) grape peel extract. From the results obtained, LC-MS/MS revealed that PLE extracted twenty-seven phenolic compounds. The main phenolic compounds were kaempferol-3-glucoside (367.23 ± 25.88 µg/mL), prunin (270.23 ± 3.62 µg/mL), p-coumaric acid (236.43 ± 26.02 µg/mL), and procyanidin B1 (117.17 ± 7.29 µg/mL). The CMC films presented suitable color and mechanical properties for food packaging applications. The addition of grape peel extract promoted the pH-sensing property, showing the sensitivity of anthocyanins to pH changes. The films functionalized with grape peel extract presented good release control of bioactive compounds, making them suitable for food packaging applications. When applied to monitor the freshness of pork and milk, the films exhibited remarkable color changes associated with the pH of the food during storage. In conclusion, PLE is a sustainable approach to obtaining bioactive compounds from the grape peel, which can be applied in the formulation of pH-sensing films as a promising sustainable material to monitor food freshness during storage.


Assuntos
Carne de Porco , Carne Vermelha , Vitis , Animais , Suínos , Carboximetilcelulose Sódica/química , Carne Vermelha/análise , Leite , Antocianinas/química , Cromatografia Líquida , Concentração de Íons de Hidrogênio , Espectrometria de Massas em Tandem , Fenóis
16.
Food Chem ; 445: 138721, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359571

RESUMO

The aim of this study was to modify carboxymethyl cellulose (CMC) films with onion peel extract (OPE) (0-2 g), onion peel powder (OPP) (0-2 g) and boron nitride nanoparticles (BN) (0-100 mg). 17 different CMC/OPE/OPP/BN films were provided and the physicochemical properties of films were studied. The release of active compounds of the composite film was investigated over time. The obtained results showed that OPE, OPP and BN increased the physical resistance and flexibility of the films. The percentage of moisture and solubility of the films decreased with the increase of OPE, OPP and BN. By adding BN, OPE and OPP, the structure of the film became stronger and the permeability to water vapor decreased. Addition of OPE and OPP significantly increased the antioxidant property of the film. In general, it can be said that the antioxidant substances of the onion peel are protected inside the film by preparing a CMC/OPE/OPP/BN film, which, in addition to stabilizing the antioxidants, can play an effective role in the controlled release of these antioxidant substances.


Assuntos
Antioxidantes , Compostos de Boro , Cebolas , Antioxidantes/química , Cebolas/química , Carboximetilcelulose Sódica/química , Pós , Embalagem de Alimentos
17.
Int J Biol Macromol ; 261(Pt 1): 129586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266856

RESUMO

In this study, zein-loaded cinnamaldehyde (Cin@ZN) nanoparticles were incorporated into Chitosan (CS)/dialdehyde carboxymethyl cellulose (DCMC) matrix to fabricate the active food packaging materials possessing outstanding antioxidant and antibacterial properties. The research investigated how varying levels of Cin@ZN nanoparticles affected the morphology, microstructure, physicochemical properties of CS/DCMC composite films. The inclusion of Cin@ZN could significantly improve the mechanical strength, reduce the water vapor and oxygen permeability of CS/DCMC composite films and endow films with UV-light blocking properties. It's worth noting that the antibacterial and antioxidant capacities of CS/DCMC films had an astonishing enhancement with Cin@ZN blending, in which ABTS scavenging ratio of the composite films (100 mg) with different Cin@ZN contents reached >90 %. Furthermore, CS/DCMC/Cin@ZN 35 % composite film has the ability to efficiently protect strawberries from microbial damage and decelerate the spoilage rate of strawberries under ambient condition. Consequently, the CS/DCMC/Cin@ZN composite film can be applied as packaging material to extend the lifespan of fruits.


Assuntos
Acroleína/análogos & derivados , Quitosana , Nanopartículas , Zeína , Quitosana/química , Embalagem de Alimentos , Antioxidantes/química , Carboximetilcelulose Sódica/química , Antibacterianos/farmacologia , Antibacterianos/química
18.
Carbohydr Polym ; 327: 121657, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171678

RESUMO

A multifunctional polysaccharide-based hydrogel was studied as an additive for enhancing microalgae growth. The hydrogel was fabricated by physically and chemically crosslinking renewable ingredients of carboxymethyl cellulose (CMC), arrowroot starch, and activated biochar modified with iron using a bio-crosslinker of oxidized sucrose and a plasticizer of glycerol. The optimum formula for the hydrogel with a high swelling ratio, BET surface area, and electrical conductivity was found to include 1 g starch, 3 g CMC, 1.5 g biochar, 15 mL oxidized sucrose, and 1.5 mL glycerol in 200 mL deionized water. The algal yield and cell concentration after 14 days of growth in a Bold basal medium with an optimum concentration of 2.5 g hydrogel/L increased by 65.7 % and 92.2 %, respectively, compared to those of the control without the hydrogel. However, if the hydrogel concentration in the culture increased to 12.5 g/L, the algal yield was decreased by 67.8 % compared to the control due to oxidative injury. The hydrogel additive could significantly increase the nitrogen but decrease the carbon, hydrogen, and sulfur contents of the microalgae. The algal yield with 2.5 g/L hydrogel additive improved by 13.9 % compared to the algal yield with the same amounts of individual non-crosslinked hydrogel ingredients.


Assuntos
Hidrogéis , Microalgas , Ferro/química , Celulose , Amido , Glicerol , Carboximetilcelulose Sódica/química , Sacarose
19.
Int J Biol Macromol ; 259(Pt 2): 129281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216017

RESUMO

A composite film (CMC/PEI) consisting of anionic carboxymethylcellulose (CMC) and cationic polyethyleneimine (PEI) can be easily produced through the solution casting method using self-assembly based on electrostatic interaction and hydrogen bonding. Subsequently, the resulting CMC/PEI polyelectrolyte composite film with a network structure was crosslinked with divalent Cu2+ ions through ionic and coordination bonds, resulting in a strengthened Cu(II)@CMC/PEI film. The composite film was characterized based on its structural, surface, thermal, UV protection, antibacterial, and degradation aspects. The results demonstrated this film has impressive mechanical properties, remarkable solvent resistance, good antibacterial properties, and excellent UV-shielding performance by completely blocking ultraviolet light with wavelengths below 360 nm. These properties can be attributed to the presence of Cu2+ ions and PEI in the film. This work is valuable for the development of novel UV-shielding materials and should contribute to the design of carboxymethylcellulose composite films with desirable properties and exceptional performance.


Assuntos
Cobre , Polietilenoimina , Polietilenoimina/química , Cobre/química , Carboximetilcelulose Sódica/química , Solventes , Raios Ultravioleta , Cátions , Antibacterianos/farmacologia
20.
Food Chem ; 442: 138464, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38245988

RESUMO

An oyster peptide (OPs)-loaded composite nanogel based on carboxymethyl cellulose and carboxymethyl chitosan (CMC@CMCS@OPs) was prepared, and the characterization, absorption and transport mechanism were further investigated. CMC@CMCS@OPs, a dense spherical microstructure with a diameter of ∼64 nm, which enhanced the thermal and digestive stabilities of individual OPs and improved its retention rate of hypoglycemic activity in vitro. The swelling response and in-vitro release profiles showed that CMC@CMCS@OPs could help OPs achieve targeted and controlled release in the intestine. In addition, CMC@CMCS@OPs had no cytotoxicity on Caco-2 cells, and its apparent permeability coefficients increased 4.70-7.45 times compared with OPs, with the absorption rate increased by 129.38 %. Moreover, the transcytosis of CMC@CMCS@OPs nanogel occurred primarily through the macropinocytosis pathway, endocytosis pathway and intestinal efflux transporter-mediated efflux. Altogether, these results suggested that CMC@CMCS@OPs nanogel could be as an effective OPs delivery device for enhancing its stability and absorption.


Assuntos
Carboximetilcelulose Sódica , Quitosana , Polietilenoglicóis , Polietilenoimina , Humanos , Carboximetilcelulose Sódica/química , Nanogéis , Células CACO-2 , Quitosana/química , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...